Statisches Urknall Universum

Deutschsprachige Version
Benutzeravatar
Yukterez
Administrator
Beiträge: 280
Registriert: Mi 21. Okt 2015, 02:16

Statisches Urknall Universum

Beitragvon Yukterez » Mo 2. Dez 2024, 04:16

Bild
Bild Das ist die deutschsprachige Version.   Bild For the english version see here. Bild
Bild
Siehe auch: Raumzeitdiagramme | Schubumkehr | Rotverschiebung | Impuls | Leistung | Horizonte | Dichteparameter | Volumen | Big RipBild
Bild

Kritischer Wert für die dunkle Energie ΩΛ in einem geschlossenen Universum; ein geringerer Wert führt zu einem Big Crunch, der exakte Wert zu einem Stillstand und ein höherer Wert sorgt dafür dass der Hubbleparameter H nie 0 wird und letztendlich auf einen konstanten Wert zukonvergiert, also eine beschleunigte Expansion:

Code: Alles auswählen

   (* | Solver for the critical value of ΩΛ in a closed universe || yukterez.net | *)
   
   Ωk = 1-Ωm-Ωr-ΩΛ;
   pr = Ωr/3;
   pm = 0;
   H² = Ωr/a^4+Ωm/a^3+Ωk/a^2+ΩΛ;
   ȧ² = H² a^2;
   ä  = a (ΩΛ-(Ωm+pm)/a^3/2-(Ωr+pr)/a^4/2);

   Ωr = 3/10;
   Ωm = 11/10;

   f  = N[Reduce[ȧ²==ä==0 && Ωr+Ωm+ΩΛ>1 && Ωr>=0 && Ωm>=0 && ΩΛ>0 && a>1, ΩΛ]]
   A  = f[[1,2]]
   ΩΛ = f[[2,2]]/.a->A

   plot[x_]:=Plot[x, {a, A-1, A+1}, Frame -> True, GridLines -> {{A}, {}}]
   "H²"->plot[H²]
   "ȧ²"->plot[ȧ²]
   "ä"->plot[ä]
   
   Quit[]

Anwendungsbeispiel: Bei In[1] wird der normalisierte Hubbleparameter H und die erste und zweite Zeitableitung (ȧ und ä) des normalisierten Skalenfaktors a sowie die Zusammenhänge zwischen Druck, Dichte und Krümmung definiert. Bei In[5] wird die Geschwindigkeit und Beschleunigung der Expansion auf 0 gesetzt um nach dem Grenzwert zwischen Expansion und Kontraktion aufzulösen. Bei In[6] werden die gewünschten Werte für die Materie Ωm und die Strahlung Ωr festgelegt. Bei In/Out[8] wird das für den Grenzfall benötigte ΩΛ und der Skalenfaktor bei dem das unstabile Gleichgewicht eintritt ausgegeben, was zur Probe bei Out[11] nochmal geplottet wird. Die Plotwerte nach der vertikalen Hilfslinie gehören zu solchen a Werten die zu keinem vorhersehbaren Zeitpunkt t erreicht werden da beim maximalen a von hier a=4.33407 sowohl H=0 als auch dH/dt=0, also ein unstabiles Gleichgewicht erreicht wird:

Bild

Raumzeitdiagamme des oberen Universums in Proper Distance r(t), Comoving Distance R(t) & nach Conformal Time R(η) Koordinaten. rH: Hubble Radius (blau), rE: Ereignishorizont (keiner), rP: Partikelhorizont (grün), orange Kurve: Lichtkegel, graue Kurven: mitbewegte Weltlinien, R=r/a:

Bild

↑ proper, r(t) ◉ ↓ comoving, R(t)

Bild

↑ comoving, R(t) ◉ ↓ conformal, R(η)

Bild

↑ t = 8.1 Gyr, a = 1 ◉ ↓ t = 440.1 Gyr, a = 4.334

Bild

↑ proper, r(t) ◉ ↓ comoving, R(t)

Bild

↑ comoving, R(t) ◉ ↓ conformal, R(η)

Bild

Die Metrik in radiusgetreuen und umfanggetreuen Koordinaten findet sich in dieser Liste. Da hier oben die radialen Abstände eingezeichnet sind wurden Erstere verwendet. Raumzeitdiagrammcode:

Code: Alles auswählen

   (* | Evolution of a closed FLRW Universe that reaches an unstable equilibrium | *)
   
   set = {"GlobalAdaptive", "MaxErrorIncreases"->100,
   Method->"GaussKronrodRule"};                                (* Integration Rule *)
   if[F_] := If[ΩΛ<=0, Nothing, If[ΩK>0, Nothing, F]]       (* Event Horizon Check *)
   n = 100;                                                     (* Recursion Depth *)
   int[f_, {x_, xmin_, xmax_}] :=                                      (* Integral *)
   NIntegrate[f, {x, xmin, xmax},
   Method->set, MaxRecursion->n, WorkingPrecision->wp];
   wp = MachinePrecision;                                     (* Working Precision *)
   im = 200;                                                         (* Image Size *)
   ηmax = 800; pmax = 800;                                           (* Plot Range *)
   amax = 4.334070910330731109143449787268;                (* Maximal Scale Factor *)
   tmax = 440 Gyr;                                            (* Integration Limit *)
   
   c = 299792458 m/sek;                                              (* Lightspeed *)
   G = 667384*^-16 m^3 kg^-1 sek^-2;                            (* Newton Constant *)
   Gyr = 10^7*36525*24*3600 sek;                                  (* Billion Years *)
   Glyr = Gyr*c;                                             (* Billion Lightyears *)
   Mpc = 30856775777948584200000 m;                                  (* Megaparsec *)
   ρc[H_] := 3H^2/8/π/G;                                       (* Critical Density *)
   ρΛ = ρc[H0] ΩΛ;                                          (* Dark Energy Density *)
   kg = m = sek = 1;                                                   (* SI Units *)
   
   ΩR = 3/10;                          (* Radiation Proportion including Neutrinos *)
   ΩM = 11/10;                          (* Matter Proportion including Dark Matter *)
   ΩΛ = 0.0073225878457081148392542953;                  (* Dark Energy Proportion *)
   ΩT = ΩR+ΩM+ΩΛ;                           (* Total Density over Critical Density *)
   ΩK = 1-ΩT;                                                 (* Curvature Density *)
   
   H0 = 67150 m/Mpc/sek;                                        (* Hubble Constant *)
   H[a_] := H0 Sqrt[ΩR/a^4+ΩM/a^3+ΩK/a^2+ΩΛ]                   (* Hubble Parameter *)
   
   sol = Quiet[NDSolve[{A'[t]/A[t] == H[A[t]], A[0] == 1*^-15},
   A, {t, 0, tmax},
   MaxSteps->∞, WorkingPrecision->wp]];
   
   â[t_] := Evaluate[(A[t]/.sol)[[1]]];                (* Scale Factor a by Time t *)
   a[t_] := If[t<tmax, â[t], amax];                    (* Scale Factor a by Time t *)
   т[a_] := int[1/A/H[A], {A, 0, a}];                  (* Time t by Scale Factor a *)
   rP[t_] := a[t] int[c/a[т], {т, 0, t}];          (* Proper Particle Horizon by t *)
   rp[a_] := a int[c/A^2/H[A], {A, 0, a}];         (* Proper Particle Horizon by a *)
   RP[t_] := int[c/a[т], {т, 0, t}];             (* Comoving Particle Horizon by t *)
   Rp[a_] := int[c/A^2/H[A], {A, 0, a}];         (* Comoving Particle Horizon by a *)
   rE[t_] := if[a[t] int[c/a[т], {т, t, ∞}]];         (* Proper Event Horizon by t *)
   re[a_] := if[a int[c/A^2/H[A], {A, a, ∞}]];        (* Proper Event Horizon by a *)
   RE[t_] := if[int[c/a[т], {т, t, ∞}]];            (* Comoving Event Horizon by t *)
   Rε[a_] := if[int[c/A^2/H[A], {A, a, ∞}]];        (* Comoving Event Horizon by a *)
   rL[t0_, t_] := a[t] int[c/a[т], {т, t, t0}];          (* Proper Light Cone by t *)
   rl[a0_, a_] := a int[c/A^2/H[A], {A, a, a0}];         (* Proper Light Cone by a *)
   RL[t0_, t_] := int[c/a[т], {т, t, t0}];             (* Comoving Light Cone by t *)
   Rl[a0_, a_] := int[c/A^2/H[A], {A, a, a0}];         (* Comoving Light Cone by a *)
   rH[t_] := c/H[a[t]];                               (* Proper Hubble Radius by t *)
   rh[a_] := c/H[a];                                  (* Proper Hubble Radius by a *)
   RH[t_] := c/H[a[t]]/a[t];                        (* Comoving Hubble Radius by t *)
   Rh[a_] := c/H[a]/a;                              (* Comoving Hubble Radius by a *)
   
   ã[η_] := Quiet[FindRoot[Rp[Ã]/Glyr-η,     (* Scale Factor a by Conformal Time η *)
   {Ã, 0.00001}, WorkingPrecision->wp, MaxIterations->1000][[1, 2]]];
   ā = Quiet[Interpolation[Join[{{0, 0}},
   ParallelTable[{((Sin[η π/ηmax-π/2]+1) ηmax/2),
   ã[((Sin[η π/ηmax-π/2]+1) ηmax/2)]}, {η, ηmax/im, ηmax, ηmax/im}]]]];
   
   Ť[η_] := Quiet[FindRoot[RP[τ Gyr]/Glyr-η,                          (* t by η *)
   {τ, 1}, WorkingPrecision->wp, MaxIterations->1000][[1, 2]]]
   (* ţ = Quiet[Interpolation[Join[{0, 0},
   ParallelTable[{((Sin[η π/ηmax-π/2]+1) ηmax/2),
   Ť[((Sin[η π/ηmax-π/2]+1) ηmax/2)]}, {η, ηmax/im, ηmax, ηmax/im}]]]]; *)
   
   rpN = Rp[1]/Glyr;
   
   t0 = Re[t/.FindRoot[a[t]-1, {t, 10 Gyr}]]; ti = t Gyr; τi = τ Gyr;
   "t0"->t0/Gyr "Gyr"                                              (* Current Time *)
   
   "PROPER DISTANCES, f(t)"
   
   pt = Quiet[Plot[Evaluate[
   {rH[τi]/Glyr, rP[τi]/Glyr, rE[τi]/Glyr}],
   {τ, 0, pmax}, Frame->True, AspectRatio->1,
   FrameTicks->None, PlotRange->{{0, pmax}, {0, pmax}},
   PlotStyle->{{Thickness[0.005]},
   {Darker[Green], Thickness[0.005]}, {Purple, Thickness[0.005]}},
   ImageSize->im, Filling->Top, FillingStyle->Opacity[0.1], ImagePadding->1,
   GridLines->{{}, {}}]];
   
   plot1[t_] := Rasterize[Grid[{{Rotate[Quiet[Show[Plot[Evaluate[
   {rL[ti, τi]/Glyr, -rL[ti, τi]/Glyr}],
   {τ, 0, pmax}, Frame->True, AspectRatio->1,
   FrameTicks->None, PlotRange->{{0, pmax}, {0, pmax}},
   PlotStyle->{{Orange, Thickness[0.005]}, {{Orange, Thickness[0.005]}, Dashed}},
   ImageSize->im, Filling->Top, FillingStyle->Opacity[0.1], ImagePadding->1,
   GridLines->{{}, {}}], pt]], 90 Degree]}}]];
   
   Do[Print[plot1[t]], {t, {tmax/Gyr}}]
   
   plot2 = Rasterize[Grid[{{Rotate[Quiet[Plot[Evaluate[
   Join[{0}, Table[1/amax a[τ Gyr] n^4/250, {n, 4, 55, 1}]]],
   {τ, 0, pmax}, Frame->True, AspectRatio->1,
   FrameTicks->None, PlotRange->{{0, pmax}, {0, pmax}},
   PlotStyle->Table[{Dashing->Large, Thickness[0.005],
   Gray}, {n, 1, 100}], ImageSize->im, ImagePadding->1]], 90 Degree]}}]]
   
   "COMOVING DISTANCES, f(t)"
   
   ct = Quiet[Plot[Evaluate[
   {rH[τi]/(a[τi]Glyr), rP[τi]/(a[τi]Glyr), rE[τi]/(a[τi]Glyr)}],
   {τ, 0, pmax}, Frame->True, AspectRatio->1,
   FrameTicks->None, PlotRange->{{0, pmax}, {0, pmax}},
   PlotStyle->{{Thickness[0.005]},
   {Darker[Green], Thickness[0.005]}, {Purple, Thickness[0.005]}},
   ImageSize->im, Filling->Top, FillingStyle->Opacity[0.1], ImagePadding->1,
   GridLines->{{}, {}}]];
   
   plot3[t_] := Rasterize[Grid[{{Rotate[Quiet[Show[Plot[Evaluate[
   {rL[ti, τi]/(a[τi]Glyr), -rL[ti, τi]/(a[τi]Glyr)}],
   {τ, 0, pmax}, Frame->True, AspectRatio->1,
   FrameTicks->None, PlotRange->{{0, pmax}, {0, pmax}},
   PlotStyle->{{Orange, Thickness[0.005]}, {{Orange, Thickness[0.005]}, Dashed}},
   ImageSize->im, Filling->Top, FillingStyle->Opacity[0.1], ImagePadding->1,
   GridLines->{{}, {}}], ct]], 90 Degree]}}]];
   
   Do[Print[plot3[t]], {t, {tmax/Gyr}}]
   
   plot4 = Rasterize[Grid[{{Rotate[Quiet[Plot[Evaluate[
   Join[{0}, Table[n, {n, 100, pmax, 100}]]],
   {τ, 0, pmax}, Frame->True, AspectRatio->1,
   FrameTicks->None, PlotRange->{{0, pmax}, {0, pmax}},
   PlotStyle->Table[{Dashing->Large, Thickness[0.005],
   Gray}, {n, 1, 100}], ImageSize->im, ImagePadding->1]], 90 Degree]}}]]
   
   "COMOVING DISTANCES, f(η)"
   
   cη = Quiet[Plot[Evaluate[
   {Rh[ā[Ct]]/Glyr, Ct, Rε[ā[Ct]]/Glyr}],
   {Ct, 0, ηmax}, Frame->True, AspectRatio->1,
   FrameTicks->None, PlotRange->{{0, ηmax}, {0, pmax}},
   PlotStyle->{{Thickness[0.005]},
   {Darker[Green], Thickness[0.005]}, {Purple, Thickness[0.005]}},
   ImageSize->im, Filling->Top, FillingStyle->Opacity[0.1], ImagePadding->1,
   GridLines->{{}, {}}]];
   
   plot9[η_] := Rasterize[Grid[{{Rotate[Quiet[Show[Plot[Evaluate[
   {η-Ct, Ct-η}], {Ct, 0, ηmax},
   Frame->True, AspectRatio->1,
   FrameTicks->None, PlotRange->{{0, ηmax}, {0, pmax}},
   PlotStyle->{{Orange, Thickness[0.005]}, {{Orange, Thickness[0.005]}, Dashed}},
   ImageSize->im, Filling->Top, FillingStyle->Opacity[0.1], ImagePadding->1,
   GridLines->{{}, {}}], cη]], 90 Degree]}}]];
   
   Do[Print[plot9[η]], {η, {RP[tmax]/Glyr}}]
   
   plot10 = Rasterize[Grid[{{Rotate[Quiet[Plot[Evaluate[
   Join[{0}, Table[n, {n, 100, pmax, 100}]]],
   {Ct, 0, ηmax}, Frame->True, AspectRatio->1,
   FrameTicks->None, PlotRange->{{0, ηmax}, {0, pmax}},
   PlotStyle->Table[{Dashing->Large, Thickness[0.005],
   Gray}, {n, 1, 100}], ImageSize->im, ImagePadding->1]], 90 Degree]}}]]
Bild
by Simon Tyran, Vienna @ youtube || rumble || odysee || minds || wikipedia || stackexchange || License: CC-BY 4 ▣ If images don't load: [ctrl]+[F5]Bild

Zurück zu „Yukterez Notizblock“

Wer ist online?

Mitglieder in diesem Forum: 0 Mitglieder und 1 Gast