Schwarzschild Orbits

Physik, Mathematik & Programmierung
Benutzeravatar
Yukterez
Administrator
Beiträge: 145
Registriert: Mi 21. Okt 2015, 02:16

Schwarzschild Orbits

Beitragvon Yukterez » Sa 21. Mai 2016, 23:08

Update: ENGLISH VERSION Bild Bild
Bild

Die Differentialgleichung lautet





ist die Eigenzeit des Testpartikels, und die Koordinatenzeit eines Beobachters at infinty. Um die Koordinatenzeit eines stationären Beobachters im Abstand vom Schwerpunkt zu erhalten wird einfach durch dividiert, mit dem Schwarzschildradius . Die totale Zeitdilatation ist das multiplikative Produkt aus der gravitativen und der kinematischen Zeitdilatation.

Die transversale und radiale Komponente der lokalen Geschwindigkeit lautet





mit als der initialen transversalen, und als der initialen radialen Geschwindigkeit mit dem lokalen Abschusswinkel (von außen erscheint dieser aufgrund der radialen Längenkontraktion flacher).

Um von der lokalen Geschwindigkeit auf die dilatierte zu transformieren gilt für die radiale und transversale Komponente:



Der Betrag der lokalen bzw. verzögerten Geschwindigkeit ist dann nach Pythagoras



Der Drehimpuls



und die Gesamtenergie



sind konstant, wobei die einzelnen Komponenten der Energie



sind.

Code: Alles auswählen

(* Schwarzschild Simulator, relativistische Wurfparabel ||| yukterez.net  Version 06, 2017 ||| Syntax: Mathematica *)
(*|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||*)

ClearAll["Global`*"]                                       (* Variablen frei machen *)
G = 1; M = 1; c = 1; rs = 2 G M/c^2;                       (* Einheiten *)
wp = MachinePrecision;                                     (* numerische Genauigkeit *)
para = 20; pstep = 1/2;                                    (* Paraboloid Grid *)

(*|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||*)

j[v_] := Sqrt[1 - v^2/c^2];    J = j[v0];                  (* Gammafaktor *)
k[r_] := Sqrt[1 - rs/r];       κ = k[r0];                  (* Schwarzschildfaktor *)

(*|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||*)

r0 = 151/100 rs;                                           (* Startradius *)
v0 = Sqrt[G M/r0]/κ;                                       (* lokale Startgeschwindigkeit *)
φ  = Pi/4;                                                 (* Abschusswinkel *)
θ0 = 0;                                                    (* Startwinkel *)
υ  = 2;                                                    (* Simulationsdauer *)

(* г = Sqrt[χ^2 + γ^2]; Θ = ArcSin[γ/г]; *)                (* Kartesisch auf Polar *)

(*|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||*)

vr0 = v0 Sin[φ] κ/J; vθ0 = v0/r0 Cos[φ]/J;                 (* Längenkontraktion und Tiefenexpansion *)
d1 = υ/10; d2 = d1; f = 3;                                 (* Schweifdauer und Frameanzahl *)

(*|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||*)

Needs["DifferentialEquations`NDSolveProblems`"]; Needs["DifferentialEquations`NDSolveUtilities`"];
i[x_] := If[r[t] == 2, 1, If[r[t] < 2, Im[x], x]];

sol = NDSolve[{                                            (* Differentialgleichung *)
r''[t] == -((G M)/r[t]^2) + r[t] θ'[t]^2 - (3 G M)/c^2 θ'[t]^2,
r'[0]  == vr0,
r[0]   == r0,
θ''[t] == -((2 r'[t] θ'[t])/r[t]),
θ'[0]  == vθ0,
θ[0]   == θ0,
τ'[t]  == Sqrt[c^2 r[t] + r[t] r'[t]^2 - c^2 rs + r[t]^3 θ'[t]^2 - r[t]^2 rs θ'[t]^2]/(c Sqrt[r[t] - rs] Sqrt[1 - rs/r[t]]),
τ[0]   == 0,
cl'[t] == ((r'[t] / k[r[t]])^2 + (θ'[t] r[t])^2)/c^2,
cl[0]  == 0
}, {r, θ, τ, cl}, {t, 0, υ},
MaxSteps -> Infinity,
Method -> Automatic,
WorkingPrecision -> wp,
InterpolationOrder -> All];

(*|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||*)

t[ξ_] := Quiet[                                            (* Eigenzeit nach Koordinatenzeit *)
χ /.FindRoot[Evaluate[τ[χ] /. sol][[1]] - ξ, {χ, 0}, WorkingPrecision -> wp, Method -> Automatic]];
Τ := Quiet[t[ι]];

(*|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||*)

u[b_] := b - 2;
w[b_] := Quiet[NIntegrate[Sqrt[1/(1 - 2/R)], {R, 2 + 1*^-8, b}]];
q[b_] := Quiet[Sqrt[w[b]^2 - u[b]^2]];
grid[n_] := Quiet[Re[я /. FindRoot[2 + Quiet[NIntegrate[Sqrt[1/(1 - 2/R)], {R, 2, я}]] == n, {я, 3}]]];

(*|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||*)

x[t_] := (Sin[Evaluate[θ[t] /. sol]] Evaluate[r[t] /. sol])[[1]]
y[t_] := (Cos[Evaluate[θ[t] /. sol]] Evaluate[r[t] /. sol])[[1]]

(*|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||*)

R[t_] := Evaluate[r[t] /. sol][[1]];                       (* radialer Abstand *)
γ[t_] := Evaluate[τ'[t] /. sol][[1]];                      (* Zeitdilatation *)
и[t_] := Evaluate[τ[t] /. sol][[1]];                       (* Koordinatenzeit *)

(*|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||*)

crθ[t_] := Evaluate[cl'[t] /. sol][[1]];                   (* Celerität *)
vrθ[t_] := crθ[t]/Sqrt[1 + crθ[t]^2];
clr[t_] := Evaluate[r'[t] /. sol][[1]];
clθ[t_] := R[t] Evaluate[θ'[t] /. sol][[1]];

(*|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||*)

vr[t_] := clr[t]/γ[t]/k[R[t]]^2;                           (* lokale Geschwindigkeit, radial *)
vt[t_] := clθ[t]/γ[t]/k[R[t]];                             (* lokale Geschwindigkeit, transversal *)
vp[t_] := Sqrt[vr[t]^2 + vt[t]^2];                         (* lokale Geschwindigkeit, total *)
vc[t_] := Sqrt[vr[t]^2 k[R[t]]^2 + vt[t]^2] k[R[t]];       (* Koordinatengeschwindigkeit, total *)

(*|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||*)

s[text_] := Style[text, FontSize -> font];  font = 11;     (* Stil der Anzeigetafel *)
PR = 2 r0;                                                 (* Plot Range *)

(*|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||*)

Xa = 24; Ya = 2 Xa/3;                                      (*Paraboloid Plot*)
Plot[{q[x], q[-x]}, {x, -Xa, Xa}, AspectRatio -> Ya/2/Xa,
Frame -> True, PlotRange -> {{-Xa, Xa}, {0, Ya}}, PlotStyle -> Black]

(*|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||*)

Do[Print[                                                  (* Animation nach Eigenzeit *)
Rasterize[Grid[{{Show[Graphics[{
{LightGray, Disk[{0, 0}, rs]},
{Lighter[Gray], Dashed, Circle[{0, 0}, r0]}},
Frame -> True, ImageSize -> 360,
PlotRange -> PR, ImagePadding ->  Automatic],
Graphics[Table[{LightGray, Circle[{0, 0}, grid[n]]}, {n, 2 + pstep, para, pstep}]],
Graphics[{PointSize[0.01], Red, Point[{x[т], y[т]}]}],

ParametricPlot[{x[η], y[η]}, {η, 0, Max[1*^-16, т - d1]},
PlotStyle->{Thickness[0.004], Lighter[Lighter[Gray]]}],
ParametricPlot[{x[η], y[η]}, {η, Max[1*^-16, т - d2], т},
ColorFunction -> Function[{x, y, η},
Hue[0, 1, 0.5, Max[Min[(-т + (η + d2))/d2, 1], 0]]],
ColorFunctionScaling -> False]]},

      {Grid[{
      {s["  Eigenzeit"],           " = ",    s[N[т, 8]],                                      s[" GM/c³"]},
      {s["  Koordinatenzeit"],     " = ",    s[N[Evaluate[τ[т] /. sol][[1]], 8]],             s[" GM/c³"]},
      {s["  Zeitdilatation"],      " = ",    s[N[γ[т], 8]],                                   s[" dτ/dt"]},
      {s["  Winkel"],              " = ",    s[N[Evaluate[(θ[т] /. sol) 180/Pi][[1]], 8]],    s[" grad"]},
      {s["  radialer Abstand"],    " = ",    s[N[R[т] , 8]],                                  s[" GM/c²"]},
      {s["  x-Achse"],             " = ",    s[N[x[т], 8]],                                   s[" GM/c²"]},
      {s["  y-Achse"],             " = ",    s[N[y[т], 8]],                                   s[" GM/c²"]},
      {s["  v lokal"],             " = ",    s[N[vp[т], 8]],                                  s[" c"]},
      {s["  v extern"],            " = ",    s[N[vc[т], 8]],                                  s[" c"]},
      {s["  kinetische Energie"],  " = ",    s[N[1/Sqrt[1 - vp[т]^2] - 1, 8]],                s[" mc²"]},
      {s[" "],                     "   ",    s["                 "],                          s[" "]}
      }, Alignment -> Left, Spacings -> {0, 1/2}]}}, Alignment -> Left]]
      ], {т, υ/f, υ, υ/f}]
   
(*|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||*)

Do[Print[                                                  (* Animation nach Koordinatenzeit *)
Rasterize[Grid[{{Show[Graphics[{
{LightGray, Disk[{0, 0}, rs]},
{Lighter[Gray], Dashed, Circle[{0, 0}, r0]}},
Frame -> True, ImageSize -> 360,
PlotRange -> PR, ImagePadding -> Automatic],
Graphics[Table[{LightGray, Circle[{0, 0}, grid[n]]}, {n, 2 + pstep, para, pstep}]],
Graphics[{PointSize[0.01], Red, Point[{x[Τ], y[Τ]}]}],

ParametricPlot[{x[η], y[η]}, {η, 0, Max[1*^-16, Τ - d1]},
PlotStyle->{Thickness[0.004], Lighter[Lighter[Gray]]}],
ParametricPlot[{x[η], y[η]}, {η, Max[1*^-16, Τ - d2], Τ},
ColorFunction -> Function[{x, y, η},
Hue[0, 1, 0.5, Max[Min[(-Τ + (η + d2))/d2, 1], 0]]],
ColorFunctionScaling -> False]]},

      {Grid[{
      {s["  Eigenzeit"],           " = ",    s[N[Τ, 8]],                                      s[" GM/c³"]},
      {s["  Koordinatenzeit"],     " = ",    s[N[ι, 8]],                                      s[" GM/c³"]},
      {s["  Zeitdilatation"],      " = ",    s[N[γ[Τ], 8]],                                   s[" dτ/dt"]},
      {s["  Winkel"],              " = ",    s[N[Evaluate[(θ[Τ] /. sol) 180/Pi][[1]], 8]],    s[" grad"]},
      {s["  radialer Abstand"],    " = ",    s[N[R[Τ], 8]],                                   s[" GM/c²"]},
      {s["  x-Achse"],             " = ",    s[N[x[Τ], 8]],                                   s[" GM/c²"]},
      {s["  y-Achse"],             " = ",    s[N[y[Τ], 8]],                                   s[" GM/c²"]},
      {s["  v lokal"],             " = ",    s[N[vp[Τ], 8]],                                  s[" c"]},
      {s["  v extern"],            " = ",    s[N[vc[Τ], 8]],                                  s[" c"]},
      {s["  kinetische Energie"],  " = ",    s[N[1/Sqrt[1 - vp[Τ]^2] - 1, 8]],                s[" mc²"]},
      {s[" "],                     "   ",    s["                 "],                          s[" "]}
      }, Alignment -> Left, Spacings -> {0, 1/2}]}}, Alignment -> Left]]
      ], {ι, и[υ]/f, и[υ], и[υ]/f}]
   
(*|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||*)
(* Syntax: Mathematica || schwarzschild.yukterez.net || kerr.yukterez.net ||| Simon Tyran - [Симон Тыран] - Vienna *)


Verschiedene Integrationsmethoden (bei Orbits in einem Mindestabstand vom zweifachen EH reicht die Methode Automatic):

Code: Alles auswählen

Method -> {"EventLocator", "Event" -> (r[t] - 2.000001)}

Code: Alles auswählen

Method -> {"StiffnessSwitching", Method -> {"ExplicitRungeKutta", Automatic}}

Code: Alles auswählen

Method -> {"ImplicitRungeKutta", DifferenceOrder" -> 20}

Mehrere Testpartikel:

Code: Alles auswählen

(* Schwarzschild Simulator für mehrere Testpartikel ||| schwarzschild.yukterez.net  5 2015 ||| Syntax: Mathematica *)
(*/////////////////////////////////////////////////////////////////////////////////////////////////////////////////*)

G = 1; M = 1; c = 1; rs = 2 G M/c^2;                       (* Einheiten *)
wp = MachinePrecision;                                     (* Genauigkeit *)
para = 60; pstep = 1/2;                                    (* Paraboloid Grid *)

(*/////////////////////////////////////////////////////////////////////////////////////////////////////////////////*)

j[v_] := Sqrt[1 - v^2/c^2];                                (* Gammafaktor *)
k[r_] := Sqrt[1 - rs/r];                                   (* Schwarzschildfaktor *)

(*/////////////////////////////////////////////////////////////////////////////////////////////////////////////////*)

r01 = Sqrt[x01^2 + y01^2];                                 (* Startradius *)
y01 = +1 rs; x01 = +8 rs;                                  (* Position *)
v01 = 0;                                                   (* lokale Startgeschwindigkeit *)
φ1  = 0;                                                   (* Abschusswinkel *)
θ01 = ArcSin[y01/r01];                                     (* Startwinkel *)

r02 = Sqrt[x02^2 + y02^2];                                 (* Startradius *)
y02 = -1 rs; x02 = +8 rs;                                  (* Position *)
v02 = 0;                                                   (* lokale Startgeschwindigkeit *)
φ2  = 0;                                                   (* Abschusswinkel *)
θ02 = ArcSin[y02/r02];                                     (* Startwinkel *)

r03 = Sqrt[x03^2 + y03^2];                                 (* Startradius *)
y03 = +1 rs; x03 = +6 rs;                                  (* Position *)
v03 = 0;                                                   (* lokale Startgeschwindigkeit *)
φ3  = 0;                                                   (* Abschusswinkel *)
θ03 = ArcSin[y03/r03];                                     (* Startwinkel *)

r04 = Sqrt[x04^2 + y04^2];                                 (* Startradius *)
y04 = -1 rs; x04 = +6 rs;                                  (* Position *)
v04 = 0;                                                   (* lokale Startgeschwindigkeit *)
φ4  = 0;                                                   (* Abschusswinkel *)
θ04 = ArcSin[y04/r04];                                     (* Startwinkel *)

(*/////////////////////////////////////////////////////////////////////////////////////////////////////////////////*)

T  = 100;                                                  (* Simulationsdauer *)

(*/////////////////////////////////////////////////////////////////////////////////////////////////////////////////*)

sol1 = NDSolve[{                                           (* Differentialgleichung *)
r''[t] == -((G M)/r[t]^2) + r[t] θ'[t]^2 - (3 G M)/c^2 θ'[t]^2,
r'[0]  == 0,
r[0]   == r01,
θ''[t] == -((2 r'[t] θ'[t])/r[t]),
θ'[0]  == 0,
θ[0]   == θ01,
τ'[t]  == Sqrt[c^2 r[t] + r[t] r'[t]^2 - c^2 rs + r[t]^3 θ'[t]^2 - r[t]^2 rs θ'[t]^2]/(c Sqrt[r[t] - rs] Sqrt[1 - rs/r[t]]),
τ[0]   == 0,
cl'[t] == ((r'[t] / k[r[t]])^2 + (θ'[t] r[t])^2)/c^2,
cl[0]  == 0
}, {r, θ, τ, cl}, {t, 0, T}, WorkingPrecision -> wp,
MaxSteps -> Infinity, Method -> Automatic,
InterpolationOrder -> All];

sol2 = NDSolve[{                                            (* Differentialgleichung *)
r''[t] == -((G M)/r[t]^2) + r[t] θ'[t]^2 - (3 G M)/c^2 θ'[t]^2,
r'[0]  == 0,
r[0]   == r02,
θ''[t] == -((2 r'[t] θ'[t])/r[t]),
θ'[0]  == 0,
θ[0]   == θ02,
τ'[t]  == Sqrt[c^2 r[t] + r[t] r'[t]^2 - c^2 rs + r[t]^3 θ'[t]^2 - r[t]^2 rs θ'[t]^2]/(c Sqrt[r[t] - rs] Sqrt[1 - rs/r[t]]),
τ[0]   == 0,
cl'[t] == ((r'[t] / k[r[t]])^2 + (θ'[t] r[t])^2)/c^2,
cl[0]  == 0
}, {r, θ, τ, cl}, {t, 0, T}, WorkingPrecision -> wp,
MaxSteps -> Infinity, Method -> Automatic,
InterpolationOrder -> All];

sol3 = NDSolve[{                                            (* Differentialgleichung *)
r''[t] == -((G M)/r[t]^2) + r[t] θ'[t]^2 - (3 G M)/c^2 θ'[t]^2,
r'[0]  == 0,
r[0]   == r03,
θ''[t] == -((2 r'[t] θ'[t])/r[t]),
θ'[0]  == 0,
θ[0]   == θ03,
τ'[t]  == Sqrt[c^2 r[t] + r[t] r'[t]^2 - c^2 rs + r[t]^3 θ'[t]^2 - r[t]^2 rs θ'[t]^2]/(c Sqrt[r[t] - rs] Sqrt[1 - rs/r[t]]),
τ[0]   == 0,
cl'[t] == ((r'[t] / k[r[t]])^2 + (θ'[t] r[t])^2)/c^2,
cl[0]  == 0
}, {r, θ, τ, cl}, {t, 0, T}, WorkingPrecision -> wp,
MaxSteps -> Infinity, Method -> Automatic,
InterpolationOrder -> All];

sol4 = NDSolve[{                                            (* Differentialgleichung *)
r''[t] == -((G M)/r[t]^2) + r[t] θ'[t]^2 - (3 G M)/c^2 θ'[t]^2,
r'[0]  == 0,
r[0]   == r04,
θ''[t] == -((2 r'[t] θ'[t])/r[t]),
θ'[0]  == 0,
θ[0]   == θ04,
τ'[t]  == Sqrt[c^2 r[t] + r[t] r'[t]^2 - c^2 rs + r[t]^3 θ'[t]^2 - r[t]^2 rs θ'[t]^2]/(c Sqrt[r[t] - rs] Sqrt[1 - rs/r[t]]),
τ[0]   == 0,
cl'[t] == ((r'[t] / k[r[t]])^2 + (θ'[t] r[t])^2)/c^2,
cl[0]  == 0
}, {r, θ, τ, cl}, {t, 0, T}, WorkingPrecision -> wp,
MaxSteps -> Infinity, Method -> Automatic,
InterpolationOrder -> All];

(*/////////////////////////////////////////////////////////////////////////////////////////////////////////////////*)

t1[ξ_] := Quiet[                                           (* Eigenzeit nach Koordinatenzeit *)
χ /.FindRoot[Evaluate[τ[χ] /. sol1][[1]] - ξ, {χ, 0},
WorkingPrecision -> wp, Method -> Automatic]];
Τ1 := Quiet[t1[ι]];
t2[ξ_] := Quiet[                                           (* Eigenzeit nach Koordinatenzeit *)
χ /.FindRoot[Evaluate[τ[χ] /. sol2][[1]] - ξ, {χ, 0},
WorkingPrecision -> wp, Method -> Automatic]];
Τ2 := Quiet[t2[ι]];
t3[ξ_] := Quiet[                                           (* Eigenzeit nach Koordinatenzeit *)
χ /.FindRoot[Evaluate[τ[χ] /. sol3][[1]] - ξ, {χ, 0},
WorkingPrecision -> wp, Method -> Automatic]];
Τ3 := Quiet[t3[ι]];
t4[ξ_] := Quiet[                                           (* Eigenzeit nach Koordinatenzeit *)
χ /.FindRoot[Evaluate[τ[χ] /. sol4][[1]] - ξ, {χ, 0},
WorkingPrecision -> wp, Method -> Automatic]];
Τ4 := Quiet[t4[ι]];

(*/////////////////////////////////////////////////////////////////////////////////////////////////////////////////*)

u[x_, y_] = Max[2, Sqrt[x^2 + y^2]];                       (* flamm'sches Paraboloid *)
w[x_, y_] = 2 + Integrate[Sqrt[1/(1 - 2/R)], {R, 2, u[x, y]}];
q[x_, y_] = Sqrt[w[x, y]^2 - u[x, y]^2];
grid[n_]  = я /. FindRoot[2 + Sqrt[(-2 + я) я] + Log[-1 + я + Sqrt[(-2 + я) я]] == R, {я, 0}];

(*/////////////////////////////////////////////////////////////////////////////////////////////////////////////////*)

x1[t_] := (Sin[Evaluate[θ[t] /. sol1]] Evaluate[r[t] /. sol1])[[1]]
y1[t_] := (Cos[Evaluate[θ[t] /. sol1]] Evaluate[r[t] /. sol1])[[1]]

x2[t_] := (Sin[Evaluate[θ[t] /. sol2]] Evaluate[r[t] /. sol2])[[1]]
y2[t_] := (Cos[Evaluate[θ[t] /. sol2]] Evaluate[r[t] /. sol2])[[1]]

x3[t_] := (Sin[Evaluate[θ[t] /. sol3]] Evaluate[r[t] /. sol3])[[1]]
y3[t_] := (Cos[Evaluate[θ[t] /. sol3]] Evaluate[r[t] /. sol3])[[1]]

x4[t_] := (Sin[Evaluate[θ[t] /. sol4]] Evaluate[r[t] /. sol4])[[1]]
y4[t_] := (Cos[Evaluate[θ[t] /. sol4]] Evaluate[r[t] /. sol4])[[1]]

(*/////////////////////////////////////////////////////////////////////////////////////////////////////////////////*)

R1[t_] := Evaluate[r[t] /. sol1][[1]];                     (* radialer Abstand *)
γ1[t_] := Evaluate[τ'[t] /. sol1][[1]];                    (* Zeitdilatation *)
и1[t_] := Evaluate[τ[t] /. sol1][[1]];                     (* Koordinatenzeit *)

R2[t_] := Evaluate[r[t] /. sol2][[1]];                     (* radialer Abstand *)
γ2[t_] := Evaluate[τ'[t] /. sol2][[1]];                    (* Zeitdilatation *)
и2[t_] := Evaluate[τ[t] /. sol2][[1]];                     (* Koordinatenzeit *)

R3[t_] := Evaluate[r[t] /. sol3][[1]];                     (* radialer Abstand *)
γ3[t_] := Evaluate[τ'[t] /. sol3][[1]];                    (* Zeitdilatation *)
и3[t_] := Evaluate[τ[t] /. sol3][[1]];                     (* Koordinatenzeit *)

R4[t_] := Evaluate[r[t] /. sol4][[1]];                     (* radialer Abstand *)
γ4[t_] := Evaluate[τ'[t] /. sol4][[1]];                    (* Zeitdilatation *)
и4[t_] := Evaluate[τ[t] /. sol4][[1]];                     (* Koordinatenzeit *)

(*/////////////////////////////////////////////////////////////////////////////////////////////////////////////////*)

crθ1[t_] := Evaluate[cl'[t] /. sol1][[1]];                 
vrθ1[t_] := crθ1[t]/Sqrt[1 + crθ1[t]^2];
clr1[t_] := Evaluate[r'[t] /. sol1][[1]];
clθ1[t_] := R1[t] Evaluate[θ'[t] /. sol1][[1]];

crθ2[t_] := Evaluate[cl'[t] /. sol2][[1]];                 
vrθ2[t_] := crθ2[t]/Sqrt[1 + crθ2[t]^2];
clr2[t_] := Evaluate[r'[t] /. sol2][[1]];
clθ2[t_] := R2[t] Evaluate[θ'[t] /. sol2][[1]];

crθ3[t_] := Evaluate[cl'[t] /. sol3][[1]];                 
vrθ3[t_] := crθ3[t]/Sqrt[1 + crθ3[t]^2];
clr3[t_] := Evaluate[r'[t] /. sol3][[1]];
clθ3[t_] := R3[t] Evaluate[θ'[t] /. sol3][[1]];

crθ4[t_] := Evaluate[cl'[t] /. sol4][[1]];                 
vrθ4[t_] := crθ4[t]/Sqrt[1 + crθ4[t]^2];
clr4[t_] := Evaluate[r'[t] /. sol4][[1]];
clθ4[t_] := R4[t] Evaluate[θ'[t] /. sol4][[1]];

(*/////////////////////////////////////////////////////////////////////////////////////////////////////////////////*)

vr1[t_] := clr1[t]/γ1[t]/k[R1[t]]^2;                        (* lokale Geschwindigkeit, radial *)
vt1[t_] := clθ1[t]/γ1[t]/k[R1[t]];                          (* lokale Geschwindigkeit, transversal *)
vp1[t_] := Sqrt[vr1[t]^2 + vt1[t]^2];                       (* lokale Geschwindigkeit, total *)
vc1[t_] := Sqrt[vr1[t]^2 k[R1[t]]^2 + vt1[t]^2] k[R1[t]];   (* Koordinatengeschwindigkeit, total *)

vr2[t_] := clr2[t]/γ2[t]/k[R2[t]]^2;                        (* lokale Geschwindigkeit, radial *)
vt2[t_] := clθ2[t]/γ2[t]/k[R2[t]];                          (* lokale Geschwindigkeit, transversal *)
vp2[t_] := Sqrt[vr2[t]^2 + vt2[t]^2];                       (* lokale Geschwindigkeit, total *)
vc2[t_] := Sqrt[vr2[t]^2 k[R2[t]]^2 + vt2[t]^2] k[R2[t]];   (* Koordinatengeschwindigkeit, total *)

vr3[t_] := clr3[t]/γ3[t]/k[R3[t]]^2;                        (* lokale Geschwindigkeit, radial *)
vt3[t_] := clθ3[t]/γ3[t]/k[R3[t]];                          (* lokale Geschwindigkeit, transversal *)
vp3[t_] := Sqrt[vr3[t]^2 + vt3[t]^2];                       (* lokale Geschwindigkeit, total *)
vc3[t_] := Sqrt[vr3[t]^2 k[R3[t]]^2 + vt3[t]^2] k[R3[t]];   (* Koordinatengeschwindigkeit, total *)

vr4[t_] := clr4[t]/γ4[t]/k[R4[t]]^2;                        (* lokale Geschwindigkeit, radial *)
vt4[t_] := clθ4[t]/γ4[t]/k[R4[t]];                          (* lokale Geschwindigkeit, transversal *)
vp4[t_] := Sqrt[vr4[t]^2 + vt4[t]^2];                       (* lokale Geschwindigkeit, total *)
vc4[t_] := Sqrt[vr4[t]^2 k[R4[t]]^2 + vt4[t]^2] k[R4[t]];   (* Koordinatengeschwindigkeit, total *)

(*/////////////////////////////////////////////////////////////////////////////////////////////////////////////////*)

s[text_] := Style[text, FontSize -> font];  font = 11;

Do[Print[                                            (* Animation nach Koordinatenzeit *)
  Rasterize[Grid[{{Show[Graphics[{
      {LightGray, Disk[{0, 0}, rs]}},
       Frame -> True, ImageSize -> 400, PlotRange -> 1.2 Max[r01, r02, r03, r04], ImagePadding -> 1],
       Graphics[Table[{Lighter[Gray], Circle[{0, 0}, grid[n]]}, {n, 2 + pstep, para, pstep}]],
      
       Graphics[{PointSize[0.01], Red, Point[{x1[Τ1], y1[Τ1]}]}],
       Graphics[{PointSize[0.01], Green, Point[{x2[Τ2], y2[Τ2]}]}],
       Graphics[{PointSize[0.01], Blue, Point[{x3[Τ3], y3[Τ3]}]}],
       Graphics[{PointSize[0.01], Pink, Point[{x4[Τ4], y4[Τ4]}]}]
      
      ]},
        {Grid[{
      {"  ", s["Koordinatenzeit"], " = ", s[N[ι, 8]], s["    GM/c³"]},
      {""},
      {"  ", s["Eigenzeit 1"], " = ", s[N[Τ1, 8]], s["    GM/c³"]},
      {"  ", s["Eigenzeit 2"], " = ", s[N[Τ2, 8]], s["    GM/c³"]},
      {"  ", s["Eigenzeit 3"], " = ", s[N[Τ3, 8]], s["    GM/c³"]},
      {"  ", s["Eigenzeit 4"], " = ", s[N[Τ4, 8]], s["    GM/c³"]},
      {""},
      {"  ", s["Zeitdilatation 1"], " = ", s[N[Evaluate[τ'[Τ1] /. sol1][[1]], 8]], s["    dτ/dt"]},
      {"  ", s["Zeitdilatation 2"], " = ", s[N[Evaluate[τ'[Τ2] /. sol2][[1]], 8]], s["    dτ/dt"]},
      {"  ", s["Zeitdilatation 3"], " = ", s[N[Evaluate[τ'[Τ3] /. sol3][[1]], 8]], s["    dτ/dt"]},
      {"  ", s["Zeitdilatation 4"], " = ", s[N[Evaluate[τ'[Τ4] /. sol4][[1]], 8]], s["    dτ/dt"]},
      {""},
      {"  ", s["Winkel 1"], " = ", s[N[Evaluate[(θ[Τ1] /. sol1) 180/Pi][[1]], 8]], s["    grad"]},
      {"  ", s["Winkel 2"], " = ", s[N[Evaluate[(θ[Τ2] /. sol2) 180/Pi][[1]], 8]], s["    grad"]},
      {"  ", s["Winkel 3"], " = ", s[N[Evaluate[(θ[Τ3] /. sol3) 180/Pi][[1]], 8]], s["    grad"]},
      {"  ", s["Winkel 4"], " = ", s[N[Evaluate[(θ[Τ4] /. sol4) 180/Pi][[1]], 8]], s["    grad"]},
      {""},
      {"  ", s["radialer Abstand 1"], " = ", s[N[Evaluate[r[Τ1] /. sol1][[1]], 8]], s["    GM/c²"]},
      {"  ", s["radialer Abstand 2"], " = ", s[N[Evaluate[r[Τ2] /. sol2][[1]], 8]], s["    GM/c²"]},
      {"  ", s["radialer Abstand 3"], " = ", s[N[Evaluate[r[Τ3] /. sol3][[1]], 8]], s["    GM/c²"]},
      {"  ", s["radialer Abstand 4"], " = ", s[N[Evaluate[r[Τ4] /. sol4][[1]], 8]], s["    GM/c²"]},
      {""},
      {"  ", s["x-Achse 1"], " = ", s[N[x1[Τ1], 8]], s["    GM/c²"]},
      {"  ", s["x-Achse 2"], " = ", s[N[x2[Τ2], 8]], s["    GM/c²"]},
      {"  ", s["x-Achse 3"], " = ", s[N[x3[Τ3], 8]], s["    GM/c²"]},
      {"  ", s["x-Achse 4"], " = ", s[N[x4[Τ4], 8]], s["    GM/c²"]},
      {""},
      {"  ", s["y-Achse 1"], " = ", s[N[y1[Τ1], 8]], s["    GM/c²"]},
      {"  ", s["y-Achse 2"], " = ", s[N[y2[Τ2], 8]], s["    GM/c²"]},
      {"  ", s["y-Achse 3"], " = ", s[N[y3[Τ3], 8]], s["    GM/c²"]},
      {"  ", s["y-Achse 4"], " = ", s[N[y4[Τ4], 8]], s["    GM/c²"]},
      {""},
      {"  ", s["v lokal 1"], " = ", s[N[vp1[Τ1], 8]], s["    c"]},
      {"  ", s["v lokal 2"], " = ", s[N[vp2[Τ2], 8]], s["    c"]},
      {"  ", s["v lokal 3"], " = ", s[N[vp3[Τ3], 8]], s["    c"]},
      {"  ", s["v lokal 4"], " = ", s[N[vp4[Τ4], 8]], s["    c"]},
      {""},
      {"  ", s["v extern 1"], " = ", s[N[vc1[Τ1], 8]], s["    c"]},
      {"  ", s["v extern 2"], " = ", s[N[vc2[Τ2], 8]], s["    c"]},
      {"  ", s["v extern 3"], " = ", s[N[vc3[Τ3], 8]], s["    c"]},
      {"  ", s["v extern 4"], " = ", s[N[vc4[Τ4], 8]], s["    c"]}
      
        }, Alignment -> Left, Spacings -> {0, 1/2}]}}, Alignment -> Left]]
        ], {ι, 1, 142, 1}]
      
(*/////////////////////////////////////////////////////////////////////////////////////////////////////////////////*)
                                                                                                   (* yukterez.net *)

Freifall vs Photon:

Code: Alles auswählen

ClearAll["Global`*"];                                   \
G = 1; M = 1; c = 1; rs =  2 G M/c^2;
wp = MachinePrecision;
para = 24; pstep =  1/2;

j[v_] := Sqrt[1 - v^2/c^2]; J = j[v0];
k[r_] := Sqrt[1 - rs/r]; \[Kappa] = k[r0];

r0 = 10;
v0 = 0;
\[CurlyPhi] = 0;
\[Theta]0 = Pi/2;
\[Upsilon] = 35;

vr0 = v0 Sin[\[CurlyPhi]] \[Kappa]/J; v\[Theta]0 = v0/r0 Cos[\[CurlyPhi]]/J;

Needs["DifferentialEquations`NDSolveProblems`"]; \
Needs["DifferentialEquations`NDSolveUtilities`"];

i[x_] := If[r[t] == 2, 1, If[r[t] < 2, Im[x], x]];

sol = NDSolve[
{r''[t] == -((G M)/r[t]^2) + r[t] \[Theta]'[t]^2 - (3 G M)/c^2 \[Theta]'[t]^2, r'[0] == vr0,
r[0] == r0, \[Theta]''[t] == -((2 r'[t] \[Theta]'[t])/r[t]),
\[Theta]'[0] == v\[Theta]0, \[Theta][0] == \[Theta]0,
\[Tau]'[t] == Sqrt[c^2 r[t] + r[t] r'[t]^2 - c^2 rs + r[t]^3 \[Theta]'[t]^2 - r[t]^2 rs \[Theta]'[t]^2]/(c Sqrt[r[t] - rs] Sqrt[1 - rs/r[t]]), \[Tau][0] == 0,
cl'[t] == ((r'[t]/k[r[t]])^2 + (\[Theta]'[t] r[t])^2)/c^2,
cl[0] == 0}, {r, \[Theta], \[Tau], cl}, {t, 0, \[Upsilon]},
MaxSteps -> Infinity, Method -> Automatic, WorkingPrecision -> wp, InterpolationOrder -> All];

solp = NDSolve[
{r'[t] == -(1 - 2/r[t]), r[0] == 10}, r, {t, 0, 1000},
MaxSteps -> Infinity, Method -> Automatic, WorkingPrecision -> 32, InterpolationOrder -> All];

rp[\[Tau]_] := Quiet[Evaluate[r[\[Tau]] /. solp][[1]]];
тp = Quiet[tt /. FindRoot[rp[tt] - r1, {tt, 1}, WorkingPrecision -> 32]];

rf[t_] := Quiet[Evaluate[r[t] /. solf][[1]]];
T = Quiet[t /. FindRoot[rf[t] - r1, {t, 1}]];
тf = Quiet[Evaluate[\[Tau][T] /. solf][[1]]];

t[\[Xi]_] := Quiet[
\[Chi] /. FindRoot[
Evaluate[\[Tau][\[Chi]] /. sol][[1]] - \[Xi], {\[Chi], 0},
WorkingPrecision -> wp, Method -> Automatic]];
\[CapitalTau] := Quiet[t[\[Iota]]];

u[b_] = b - 2;
Quiet[w[b_] = NIntegrate[Sqrt[1/(1 - 2/R)], {R, 2, b}];
q[b_] = Sqrt[w[b]^2 - u[b]^2];]
grid[n_] = я /. FindRoot[2 + Sqrt[(-2 + я) я] + Log[-1 + я + Sqrt[(-2 + я) я]] == n, {я, 0}];

x[t_] := (Sin[Evaluate[\[Theta][t] /. sol]] Evaluate[r[t] /. sol])[[1]]
y[t_] := (Cos[Evaluate[\[Theta][t] /. sol]] Evaluate[r[t] /. sol])[[1]]

R[t_] := Evaluate[r[t] /. sol][[1]];
\[Gamma][t_] := Evaluate[\[Tau]'[t] /. sol][[1]];
и[t_] := Evaluate[\[Tau][t] /. sol][[1]];

cr\[Theta][t_] := Evaluate[cl'[t] /. sol][[1]]; (*Celerität*)
vr\[Theta][t_] := cr\[Theta][t]/Sqrt[1 + cr\[Theta][t]^2];
clr[t_] := Evaluate[r'[t] /. sol][[1]];
cl\[Theta][t_] := R[t] Evaluate[\[Theta]'[t] /. sol][[1]];

vr[t_] := clr[t]/\[Gamma][t]/k[R[t]]^2;
vt[t_] := cl\[Theta][t]/\[Gamma][t]/k[R[t]];
vp[t_] := Sqrt[vr[t]^2 + vt[t]^2];
vc[t_] := Sqrt[vr[t]^2 k[R[t]]^2 + vt[t]^2] k[R[t]];

s[text_] := Style[text, FontSize -> 11]; PR = 12;

Quiet[Do[Print[
Rasterize[Grid[{{Show[
Graphics[{{Gray, Disk[{0, 0}, rs]}, {Black, Dashed,
Circle[{0, 0}, r0]}}, Frame -> True, ImageSize -> 500, PlotRange -> PR, ImagePadding -> Automatic],
Graphics[Table[{Gray, Circle[{0, 0}, grid[n]]}, {n, 2 + pstep, para, pstep}]],
Graphics[{PointSize[0.01], Green, Point[{2, 0}]}],
Graphics[{PointSize[0.01], Blue, Point[{10, 0}]}],
Graphics[{PointSize[0.01], Red, Point[{x[Quiet[t[\[Iota] + 30.553877]]], 0}]}],
Graphics[{PointSize[0.01], Green, Point[{rp[\[Iota]], 0}]}]]},
{Grid[{
{s["  Zeit A"], " = ", s[N[30.553877 + \[Iota], 8]]},
{s["  Zeit B"], " = ", s[N[(30.553877 + \[Iota]) Sqrt[1 - 2/10], 8]]},
{s["  Zeit C"], " = ", s[N[Quiet[t[\[Iota] + 30.553877]], 8]]}},
Alignment -> Left, Spacings -> {0, 1/2}]}}, Alignment -> Left]]],
{\[Iota], 0, 40,0.1}]]

Startbedingungen: v0 = 1.111fache Kreisbahngeschwindigkeit im Perihel bei r0 = 2.8 rs = 5.6 GM/c²:

Bild

Startbedingungen: v0 = 1.02-fache Kreisbahngeschwindigkeit im Perihel bei r0 = 5 GM/c² (für die Kerr-Version hier entlang):

Bild

Startbedingungen: v0 = 1.26fache Kreisbahngeschwindigkeit im Perihel bei r0 = 10 rs = 20 GM/c²:

Bild
Симон Тыран @ wikipedia | stackexchange | wolfram

Benutzeravatar
Yukterez
Administrator
Beiträge: 145
Registriert: Mi 21. Okt 2015, 02:16

lokale und dilatierte Geschwindigkeit

Beitragvon Yukterez » Sa 21. Mai 2016, 23:09

links: lokal, rechts: extern:

Bild

links: lokal (Eigenzeit, Schalengeschwindigkeit), rechts: extern (Koordinatenzeit, verzögerte Geschwindigkeit):

Bild
Симон Тыран @ wikipedia | stackexchange | wolfram

Benutzeravatar
Yukterez
Administrator
Beiträge: 145
Registriert: Mi 21. Okt 2015, 02:16

Newton vs Einstein

Beitragvon Yukterez » Sa 21. Mai 2016, 23:09

links: Newton, rechts: Einstein (Koordinatenzeit at infinity mit Shapiro-Verzögerung):

Bild
Симон Тыран @ wikipedia | stackexchange | wolfram

Benutzeravatar
Yukterez
Administrator
Beiträge: 145
Registriert: Mi 21. Okt 2015, 02:16

Newton vs Einstein

Beitragvon Yukterez » So 22. Mai 2016, 10:52

Startbedingungen: v0 = neutonische Kreisbahngeschwindigkeit bei r0 = 10 rs = 20 GM/c² und 0° Abschusswinkel:

Bild

Startbedingungen: v0 = neutonische Kreisbahngeschwindigkeit bei r0 = 10 rs = 20 GM/c² und 45° Abschusswinkel:

Bild
Симон Тыран @ wikipedia | stackexchange | wolfram

Benutzeravatar
Yukterez
Administrator
Beiträge: 145
Registriert: Mi 21. Okt 2015, 02:16

innere Photonensphäre

Beitragvon Yukterez » Do 26. Mai 2016, 09:29

instabile Orbits um die Photonensphäre:

Bild

instabile Orbits innerhalb der Photonensphäre:

Bild
Симон Тыран @ wikipedia | stackexchange | wolfram

Benutzeravatar
Yukterez
Administrator
Beiträge: 145
Registriert: Mi 21. Okt 2015, 02:16

Schwarzschild Paraboloid

Beitragvon Yukterez » Sa 4. Jun 2016, 08:27

Die radiale Strecke zwischen den Schwarzschildkoordinaten r1=2 und r2=24 beträgt lokal nicht r2-r1=22, sondern √(528)+ln(23+√(528)) = 26.8 GM/c²:

Bild
x=r, y=√{R²-r²}


Auf der x-Achse sind die Koordinatenabstände (r=U/2/π) in Einheiten von GM/c² angegeben, während in der Tat so viele stationäre Lineale dazwischen passen wie sie auf dem Paraboloid Platz haben. Die Koordinaten bis 3GM/c² in der Draufsicht:

Bild
x=x, y=y.


unter Newton und im euklidschen Raum sähe das entsprechende Raster so aus (U=2πr):

Bild

Die x- und y-Achsen sind in beiden Bildern von (-3..+3)GM/c² abgebildet, mit einem lokalen Schalenabstand von GM/c²/5..
Симон Тыран @ wikipedia | stackexchange | wolfram



Zurück zu „Yukterez Notizblock“

Wer ist online?

Mitglieder in diesem Forum: 0 Mitglieder und 2 Gäste